Manufacturing superiority, the capability to provide high quality, competitively priced products and services in a global marketplace are few of the challenges confronted by the manufacturers. Further challenges they face are well known: drastically shorten product development cycles, increase productivity growth, stimulate product and process innovation, and respond promptly to changing customer demands. Many manufacturers, however, are woefully unaware of the widening performance gap between them and their competitors, insufficiently conscious of their customers' needs, and naively preoccupied with near term accomplishments of their goals, while neglecting the long-term investments required to compete in the international arena.

We should neither be discouraged nor paint too broadly the malaise of manufacturing capacity. An expanding core of manufacturers have begun to appreciate the level of performance and commitment needed to adequately confront competition in both domestic and global markets. They are undertaking the kind of changes and enhancements in organizational structures, governance, and relationships that are required to create the level of manufacturing excellence demanded by increasingly sophisticated and quality conscious customers around the world.
In this report, we look at some of the fundamental practices and philosophies of manufacturers. The fundamentals of manufacturing excellence have been recognized as traits of world-class manufacturers; they are generic-not certain to company, country, or industry-and they are universal in that they can be applied to a wide variety of situations. In addition to the manufacturing excellence, it is eminent to decipher the steps towards next industrial revolution.

With this edition of FabEx 19, as industry stalwarts deliberate on important aspect of Man & Machine Partnership, we at Faber Infinite Consulting strive to capture the key elements for driving effective & smart manufacturing, together!
<table>
<thead>
<tr>
<th>1</th>
<th>FOREWORD</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>BACKGROUND</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>INDUSTRIAL REVOLUTIONS: A SNAPSHOT</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>WHY EFFECTIVE AND SMART MANUFACTURING?</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>TRANSITION LANDSCAPE: FROM 3.0 TO 4.0</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>EFFECTIVE MANUFACTURING</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>WHY OPERATIONAL EXCELLENCE IS IMPORTANT?</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>SMART MANUFACTURING</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>CURRENT CHALLENGES IN MAN MACHINE PARTNERSHIP</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>WAY FORWARD</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>CONCLUSION</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>REFERENCES</td>
<td>20</td>
</tr>
</tbody>
</table>
What should be a manufacturer’s goal if it has to compete successfully in the global marketplace? The goal would be to be a “world-class” manufacturer, a term used to convey the sense of outperformance. The Japanese portray it as striving to be the best-of-the-best.

Leading manufacturers always aim to be world class. They review their performance by benchmarking themselves against competition and against other world-class operational functions, across industries and geographies. Progressive organizations apply this information to establish organizational goals and objectives. These objectives are communicated to all members of the enterprise and performance of the system is continuously assessed against these set objectives. They regularly also assess the relevance of the defined objectives to accomplishing world-class status.

World-class manufacturing organizations, regardless of their size, must work with optimum resources in dynamic environment. Managers are asked to assign production facilities over time to parallel activities respecting operational restraints and deadlines while keeping resource costs as low as possible. Thus, classic tactics may not be satisfactory when (i) a task simultaneously needs a set of separate resources and (ii) a trade-off among different objectives (like time, cost and workload balance) should be attained.

To increase productivity, every organization needs a sound operations plan. However, effective planning is a complex and vital process that covers a wide variety of activities to ensure that materials, equipment and human resources are available when and where they are needed. Operations planning is like a roadmap which will help you know where you are going and how long it will take you to get there.

Here are some benefits of an effective operational plan:

- Reduced labour costs via eliminating wasted time & non-value-added activities and improving process flow
- Reduced inventory costs by decreasing the need for safety stocks and immoderate work-in-process inventories
- Optimized equipment usage and improved capacity
- Increased on-time deliveries of products and services

Operational efficiency is the capacity of an organization to deliver products or services to its customers in the highly cost-effective way feasible while still safeguarding the superior quality of its products, service and assistance. Operational efficiency is often
accomplished by restructuring a company’s underlying processes in order to more efficiently react to continually changing market forces in a cost-effective manner. To attain operational competence a company requires to minimize redundancy and waste while leveraging the resources that add extremely to its achievement and utilizing the best of its workforce, technology and business procedures. The reduced internal costs that result from operational efficiency empower a company to achieve higher profit margins or be more successful in highly competitive markets.

Effective Manufacturing seeks to apply structured problem solving approach, continual improvement tools and standard practices for achieving world class operations, high profitability and sustainability. However, once it reaches the plateau of efficacy, the industry shall strive for the next leap of evolution – where connected operations and smart way knocks the doors.

Smart Manufacturing is being forecasted as the next Industrial Revolution or Industry 4.0. And, with several other advances throughout recent years, it all has to do with technology connectivity and the enhancements in the contextualization of data.

Smart manufacturing and the Smart Factory are a comprehensive category of manufacturing with the goal of optimizing the manufacturing process. Smart manufacturing is the process that utilizes computer controls, modeling, big data and other automation to enhance manufacturing efficiencies.

Smart manufacturing aims to take gain of advanced information and manufacturing technologies to empower flexibility in physical processes to tackle a dynamic and global market.

Smart manufacturing is existing in two ways. Primary, implementing a smart manufacturing approach is possible now. Businesses don’t have to wait for new technology to be perfected to unveil a smart manufacturing initiative. Indeed, they delay at their threat. Disruption comes and goes before you recognize it's even coming.

Subsequent, smart manufacturing is current as it is event-driven, responsive and adaptive. That is, the data is accessible, and decisions are made in genuine time.

By realizing how smart manufacturing’s features convey a specific tactic and contribute to accomplishing a business goal, you can make smart decisions about how to implement the technologies and move ahead in your smart manufacturing journey.

However, at this fascinating juncture, where we stand on the edge of industrial revolution this report intends to showcase that effective and smart manufacturing are two sides of the coin and that the industry cannot proceed to the next generation without being effective and efficient!
INDUSTRIAL REVOLUTIONS: A SNAPSHOT

- 1784
 Steam, water, mechanical production equipment

- 1870
 Division of labour, electricity mass production

- 1969
 The computer, electronics, and the internet

- ?
 The barriers between man & machine dissolve
WHY EFFECTIVE AND SMART MANUFACTURING?

Exceptional organizations manage their operations with superior efficiency in order to continue to provide high level of service to their customers at reduced costs. The business environment is very competitive – if organizations and managers keep doing what they have done in the past, organizations may not survive!

Organizations have started preparing for an era that is unfamiliar for the business community. Few are rolling out drastic changes as to reduce their overall costs & others are taking planned measures. However, organizations which will put structured change on their plans now, are the ones which shall be successful in the longer run.

Structured change process is not simple to define. Some explanations are too broad. Others set parameters so narrow that the ultimate definition seems too centered in scope. Often, we end up with definitions that seem believable in an academic sense, such as:

- Being world class
- Being the best globally
- Excellence in everything we do

Being effective and smart in manufacturing framework is not an alternative strategy, but a business must - which shall assist organizations to unlock high business performance in difficult times and stay relevant. The best way going forward is to be operationally fit and leverage the next technological wave, all the times.

The goal of being operationally fit - being effective and efficient – can be & has been achieved by few progressive and vigilant organizations. Often organizations have been exploiting various approaches and frameworks like LEAN, World Class Manufacturing, Six Sigma, Total Productive Maintenance, Toyota Production System and many more! These frameworks when customised, deployed and implemented at right situation with structured approach have been delivering encouraging results.

At one of our clients in manufacturing industry, Team Faber InfiniteConsulting delivered phenomenal results by deploying operational excellence tools and techniques. Glimpse of results delivered by operational excellence tools and methods is as under (2)
However, many a times the efforts begin and end with these tools and methods. These tools and frameworks are means to an end. The end being sustainable growth and profits!

Today, these means are leading to the Industrial Internet of Things (IIOT). The concept and successful implementation of SMART Manufacturing is being projected to be the Fourth Industrial Revolution. And with many other innovations in recent years, it all has to do with technology connectivity and the extraordinary access to and contextualization of data.

Manufacturing is advancing and your business needs to advance too. The Fourth Industrial Revolution has arrived as manufacturers blend new technologies such as the Internet of Things (IoT), robotics, virtual reality (VR) and artificial intelligence (AI) into their business tactics. SMART Manufacturing – Sense, Measure, Analyse, Report and Train – will be an integral element of this strategy. Fortunately, one doesn't need to be a large or small organization to realize the benefits of moving to a SMART Manufacturing process.

However, in order to be efficient, people, processes and technology need to be in stable and working together in sync. Other key elements of SMART Manufacturing include:

- Equipment and Connectivity
- Data Collection
- Information Management & Visualization
- Data Analysis and Intelligence
- Business Decision Making
- Workflow execution

Most of industrial IoT value will undoubtedly come from its ability to optimize operations. But IoT can radically reshape every aspect of product development and delivery, from the

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit of Measurement</th>
<th>Before Status</th>
<th>After Status</th>
<th>% Improvement Delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Delivery Time</td>
<td>Days</td>
<td>25</td>
<td>10</td>
<td>60%</td>
</tr>
<tr>
<td>Production Capacity</td>
<td>Tons per Day</td>
<td>150</td>
<td>250</td>
<td>66%</td>
</tr>
<tr>
<td>Throughput</td>
<td>Tons per Hour</td>
<td>19</td>
<td>26</td>
<td>39%</td>
</tr>
<tr>
<td>Stock outs</td>
<td>Nos</td>
<td>14</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>On Time In Full (OTIF)</td>
<td>%</td>
<td>40%</td>
<td>95%</td>
<td>137%</td>
</tr>
</tbody>
</table>
plant floor to the value chain:

- Machine sensors permit factories to measure and reduce energy and water waste, heading to lower costs and environmentally sustainable operations.
- Manufacturers can feed information from other systems and devices directly back into the production line, empowering them to make improvements in days or even hours.
- Improved asset tracking and sensor-based alerts trigger orders when stock runs low, allowing manufacturers to entirely automate the inventory replenishment process.
- Manufacturers can automatically identify potential equipment breakdowns before they occur, protecting employees and reducing unplanned downtime.

The IoT will be a major driver of what is coming to be known as the fourth industrial revolution. By leveraging IoT data, advanced analytics and smarter enterprise asset management (EAM), organizations will make operations more efficient and transform operations towards boosting efficiency. The potential business benefits (impact and opportunity) are impressive.

According to one of the report published by IBM, Smart Manufacturing can lead to the various benefits, few of it in the manufacturing maintenance domain have been highlighted below:

- Total spend on preventive maintenance can be reduced by 50%
- Maintenance cost can be reduced by up to 25%
- Capital investment can be cut down by 3-5%
- Breakdowns have been eliminated by upto 70%
- Cut unplanned outages by up to 50%
- Downtime reduction possibility by upto 50%(3)
According to the World Economic Forum (WEF) and Faber Infinite research, the journey landscape of becoming SMART from effective manufacturer shall pass through 4 phases, starting from the traditional set up to the end to end automation.

Phase 1: Traditional Set Up

The industries which lacks a system and structure driven approach to operate, falls under the industries of Phase 1. Such industries are person dependent and leads to wasted efforts. Such industries are data handicapped, either due to incorrect measurement metric, lack of data or isolated data islands where data analytics is poor or absent. Such industries are yet to leverage (partially or fully) benefits of any structured change / improvement measures.
Phase 2: Operational Excellence

Operational excellence is the foundational business case for SMART Manufacturing & IIoT implementation. Increasing efficiency by just one percent a year could add trillions of dollars to overall GDP over the next 20 years. And initial adopters are already recognizing quick wins in terms of higher productivity, reduced operating costs, superior working conditions, and efficient machine utilization. Operational excellence builds the fundamental infrastructure that empowers manufacturers to progress in their Smart and IIoT journey, modifying their processes and products and driving new revenue prospects.

Phase 3: Man & Machine Partnership

Phase 3 morph into the delivery of measurable outcomes and man enters in partnership with machine. Under this phase, data management and software based services would be in focus to drive waste and inefficiency reduction in the overall system.

Phase 4: Autonomous Pull Economy

Under this phase, the organizations shall completely shape into automated organizations & exemplified by real-time demand sensing, enabled by intelligent machines and extremely automated and flexible production and fulfilment networks will then emerge. Here end-to-end automation shall lead to pull based autonomous economy with last mile demand sensing – feeding into reactive and flexible supply chains.

Effective Manufacturing

Manufacturing Excellence is more of a philosophy, not mere methodology. It is the relentless quest of finding ways to improve performance and profitability. It is finding benefits and performance boosts in areas that organizations don’t usually look.

The potential of manufacturing excellence cannot be completely captured by terms like productivity, efficiency, and standardization. It will be in notions like growth, innovation, and customization. The world is more linked and fast-paced than it has ever been, and the manufacturing industry requires to keep up the pace. Hence, effective manufacturing is key element to manufacturing excellence and phase 2 of driving operational excellence.
Enough has been said and written about Operational Excellence and time now is to delve further into its current state and necessity for ringing in the next phase of Man & Machine Partnership. To put few facts in context, according to one of the study reports published by BTOES,

54% of Operational Excellence practitioners believe that wider understanding of Operational Excellence Methodologies is on the rise.

Around 50% Operational Excellence practitioners believe that improving the Company Culture is crucial while another 37% find execution and sustenance as critical aspect for driving operational excellence.

However, only 45% of Operational Excellence practitioners have an Enterprise-wide Operational Excellence Program and 90% of them believe the wider perception of Operational Excellence Methodologies is also growing in what it encompasses – particularly regarding the rise of Digital Transformation.

Further, yet another research reports that 32% of industrialists in Asia believe that operational excellence is must for the achieving strategic objectives of the business against only 28% of organizations have succeeded in deploying operational excellence in their respective organizations.

It is noteworthy, that only 12% of organizations from Asia have been practising operational excellence for more than 10 years against 23% from rest of the world. More than 55% of businesses in Asia believe that they will invest in the strategic/operational excellence initiatives in the upcoming year.

It is very well said that, “WELL BEGAN IS HALF DONE”.

Operational excellence is the foundation to unlock the benefits of smart manufacturing. Operational excellence builds the base for smart manufacturing. Operational excellence tools and techniques can help organizations in better beginning towards the IIOT. And smart manufacturing will falter without strong foundations of operational excellence.

Few of the benefits achieved & use cases where adoption of effective manufacturing (operational excellence) and smart manufacturing (industrial IoT) can be listed below:

- 10-20% reduction in energy consumption
- 10% increase in throughput
Structured efforts towards systemic improvements can lead to sustained gains that can be as high as 10-15% of production costs. (6)

SMART MANUFACTURING

Over the past decade, the evolution of the Internet of Things, Big Data and the desire for ever-increasing productivity has pushed the smart manufacturing movement. But what is smart manufacturing?

Today, manufacturers can see and respond to the performance of their machines and integrated systems with analytics in genuine time. They can empower machines to talk to one another, regulate operations remotely, foresee challenges and even share live data with the supply chain.

The advantages of smart machines, smart factories and smart manufacturing go much beyond efficiency, quality and cost savings. They are the pledge of enabling truly sustainable, effective and custom manufacturing. Once networked to a bigger system, smart manufacturing holds the potential to reform supply chains.

Smart manufacturing isn’t all about what is happening within the factory alone. It also enables clarity through the supply chain from original equipment manufacturers, or OEMs, right down to their bottom-tier suppliers.

A robot’s communication back to its manufacturer through the internet – or the Industrial Internet – show how technology can alter the way factories work with part suppliers and manufacturing technology providers.

Data being generated by sensors implanted in equipment has opened a new world of possibilities in manufacturing. Advancements in storage, bandwidth, processing power and algorithms enable us mine telemetry data faster than ever.

The digital revolution will magnify mechanical innovations and enable machines to shift from isolation to fully integrated production models that evolve towards learning systems.
Smart Manufacturing is the dramatically exaggerated and widespread usage of networked information-based technologies throughout the manufacturing and supply chain enterprise. The defining technical threads are time, synchronization, integrated performance metrics and cyber-physical–workforce constraints. Smart Manufacturing responds and advances to a remarkable and fundamental business revolution to demand-active economics keyed on customers, associates and the public; enterprise application and variability management; genuine-time integrated computational materials engineering and speedy qualification, demand-powered supply chain services; and broad-based workforce commitment. IT-empowered Smart factories and supply networks can better respond to national interests and strategic imperatives and can revitalize the industrial sector by accelerating global competitiveness and exports, delivering sustainable jobs, drastically improving performance, and enabling manufacturing innovation.

CURRENT CHALLENGES IN MAN MACHINE PARTNERSHIP

Industry 4.0 is coming rapidly and to compete in tomorrow’s world, and beyond. And organizations must evolve with time. So, the question is, are organizations ready for Industry 4.0? As Industry 4.0 persists to change the way we interact with the world around us, new challenges arise.

Only 6% of the manufacturers are ‘Digital Masters’: at an enhanced phase in digitizing production processes and with a robust foundation of vision, governance and employee competences. Whereas, even though 43% of manufacturers have an operational smart factory initiative, majority of them struggle with their smart factory initiatives.

Here are 9 main challenges envisaged in the journey towards strengthened man and machine partnership and smart manufacturing:

1. Lack of operational excellence to adopt

Only 6% of the manufacturers are ‘Digital Masters’: at an enhanced phase in digitizing production processes and with a robust foundation of vision, governance and employee competences. Whereas, even though 43% of manufacturers have an operational smart factory initiative, majority of them struggle with their smart factory initiatives.
SMART
2. Lack of basic infrastructure for SMART
3. Change management, something that is too frequently overlooked
4. Inadequate genuine interconnection of the entire departments
5. New business models—lack of clarity of new strategy
6. Rethinking your organization and processes to capitalize on new outcomes
7. Understanding the business case and leading successful pilots
8. Helping your organization to understand where action is required
9. Employing and developing new talent

The Internet of Things (IIoT) will link machines and systems and permit seamless data transmission across all departments of a workplace, opening opportunities for completely new business models in manufacturing, computing, and many other industries.

“The main reason behind the struggle of deploying IIOT is lack of basic infrastructure required for IIOT. The first phase of journey towards the IIOT is Operational Excellence”
For many manufacturers, the path to building a Smart Factory is still confusing because of information overload. In order to overcome this challenge, manufacturers should view this transformation as a journey with four stages that reap ongoing benefits to their operations. As with any extensive company-wide transformation, trying to achieve the end goal too quickly can leave you back where you started, having wasted time and money.

It’s critical that manufacturers understand that the Smart Factory is primarily about data. Prior to the fourth Industrial Revolution, commonly known as Industry 4.0, manufacturers relied on clipboards and manual methods to collect machine data, perform root-cause analysis, or gain insight into their operations. But as the competitive landscape of manufacturing changed, and consumer demand increased, the industry reached a point where these manual processes were no longer efficient. In fact, they cost manufacturers time and money in the form of lost productivity, suboptimal machine output and product quality.

The Smart Factory evolution is about building upon the advancements of the Third Industrial Revolution by automating the collection of data from machines and applications and transforming that data into immediate insights. This new technology turns the tedious, but critical, process of extracting insights from data into one that is instantaneous, streamlined, and achievable for every manufacturer.

The journey can be categorized in following four levels:

Level One: Data Availability

A level one system is pretty much the status quo. At this stage, data is available but difficult to use to make decisions or implement improvements. The data is in siloed systems, requiring manual work to integrate and translate into useful information. Problem solving at this level is possible but extremely time-consuming. When a product quality or machinery issue arises, operators and engineers must scramble to manually gather data from various systems before they can ascertain what happened and how to fix it. This manual approach is not only frustrating, but costly; it drains time, resources, and money from the factory. Manufacturers at level one should move to level two as soon as possible or risk wasting resources in lost production output from unplanned
downtime each day.

Level Two: Data Accessibility & Basic Stability

A level two system integrates all the disparate data sources into one single source of truth and continuously gathers and tracks production data. With the data in one location and always available, problem solving becomes almost frictionless and leads to basic stability of 4Ms—man, machine, method and material. When an issue occurs, operators and engineers can access the data in the system using data visualizations and dashboards—essentially leveraging the system as a query engine. With easy access to all the data, they can answer questions quickly, increasing plant productivity.

In addition, a level two system allows engineers to focus on addressing high-value issues such as improving the product itself, changing materials, or adopting a mass customization strategy. However, at level two, proactive analysis, which enables factories to make improvements before issues occur, still requires time, effort and engagement from engineers.

To move from level one to level two, manufacturers must implement a new data architecture and process framework, which takes only a matter of months. Also, when selecting a new architecture and adopting process framework, make sure it allows you to scale the amount of data you can collect without sacrificing performance.

Level Three: Data Activeness & Proactive Improvement

A level three system shifts manufacturing operations from reactive problem solving to proactive analysis and improvements. The system enables operators and engineers to be truly preventative and proactive in solving problems, which would not be possible in a level two system.

To move from level two to level three, you must build on the previous level’s data architecture and framework by adding new system capabilities such as predictability and intelligence. These new tools allow you to start generating insights in as little as two or three months, depending on your product mix. These new features, combined with the level two system that aggregates all your production data, create an intelligent system that on its own will find valuable insights and predict failures more accurately, while delivering information to the appropriate person at the right time. Users do not have to query the system or perform manual process analysis in order to find the answers to solving production issues.

An example of level three system attributes includes learning models that predict product defects or machine failures and identify ways to produce products more efficiently. In a level three system, a person is still needed to
make the changes that the intelligent system recommends.

Level Four: Action- oriented Data

At level four, the data system deploys the recommendations that it finds from analysing manufacturing data. For example, a machine learning model will identify an optimization, then generate and send the recommended new settings to the machine, where it is automatically executed. In such a closed-loop artificial-intelligence-controlled production line, the time it takes to execute on an insight discovered by the system becomes minimal.

Achieving level four requires datasets that are large enough and have enough validated cases to provide the information needed for the system to “know” the impacts of a production change. The time needed to move from level three to level four varies based on the amount of time it takes to gather the necessary datasets.
Automation will speed up, significantly changing the face of the manufacturing workforce, along with the skill sets needed to succeed in a significantly more automated economy. Plainly speaking, making the most of the IIoT and Smart manufacturing poses many challenges. And right now, few manufacturers are willing for them.

In this report, we have endeavoured to explain the role of operational excellence, the promise of the IIoT, and how it enables smart production. Manufacturers will confront several difficult choices about which process options to pursue. But the time to start considering them is here and now.

Effective & Smart Manufacturing is leading to some evidently visible and measurable benefits such as lower costs, more efficiency, easier inventory management, lower payback time and enhanced productivity. All this can be accomplished through the deployment of improvement frameworks and advanced technology in a strategic and intelligent way. Benefits of this industrial revolution can also be sensed in developing nations such as India, where prior technology breakthroughs have been skipped.

The end results? Shop floor professionals and manufacturing players should get to operate in the factories of the future and enhance their business and growth, while giving consumers exactly what they want!
1. www.instituteopex.org
2. www.faberinfinite.com
3. IBM Watson IoT for asset management - The Internet of Things: Driving the future of transportation
4. www.opex-asia-report- 2018 (state of industry Asia Vs ROW)
5. www.btoes.com - The global state of operational excellence critical challenges and future trends
7. www.capgemini.com
8. www.iiot-world.com
Faber Infinite Consulting (part of Faber Infinite Creative Solutions Pvt Ltd) is one of the finest management consulting and training organization aimed to support transformation journeys for clients and deliver extraordinary results. Over the last few years, the team has been assisting organizations in implementation and training of Organizational Transformation practices.

Team Faber Infinite strongly believes that People Alignment coupled with elements of focus on aspects of Strategy, Operations and Design drives organizational success. Hence our novel methodology of building alignment and tailor-made implementation approach for each organization helps clients to achieve sustained benefits and customer delight through continual improvement. Faber Infinite’s plush portfolio encompasses a wide range of innovative and futuristic services that are dispensed through four platforms namely Consulting, Technology, Training & Development and Benchmarking. Our delivery is focused on the real place of action approach with real people and real problems in real time. The focus is always on ACTION. We take pride in calling ourselves as “Implementers” with hands on experience. The key differentiator of Faber Infinite is not only to equip our clientele with state-of-the-art management practices on Strategic & Operational level, but also support them to sustainably implement these practices for long term gains.

In addition, the insights and quality services we deliver help transform organizations in economies across the world. We develop outstanding client teams to become experts in transformation practices. In doing so, we play a critical role in crafting a better world for our people, for our clients, and for our communities.

Faber Infinite Consulting has spread its footprints across 8 countries in Asia Pacific, Africa & Middle East across key industry verticals including Automotive, Construction, FMCG, Engineering, Chemical, Food and Beverages, Plastics, Textile, Industrial Manufacturing, Pharmaceuticals, Transportation & Logistics, Commercial Farms, Retail, Health Care and more. Faber Infinite strives to support the organizations’ quest for transformation and culture building initiative by providing rapid, performance-based, implementation focused solutions.
PRIZMA - Skill Analysis Platform is an effective and path-breaking tool by Prizma Digitech (www.prizma.tech). PRIZMA is aimed at raising employee and employer confidence by skill enhancement, improving productivity and giving direction through focused and objective skill analysis. It will help organizations to move forward and achieve the targeted results with the skilled employees.

Skills and knowledge are the motivating force for the growth of any organization. Skill development is an inevitable requirement to improve the overall efficiency and effectiveness for the organizational growth. We are glad to present an innovative skill analysis tool – PRIZMA.

Equally important, PriZma helps to identify training and development needs of current employees within an organization, helping both individuals and organizations reach their full potentials.

Other set of modules, where operational intelligence and analytics is offered, where it plays key role for rolling out Smart Manufacturing and IIoT.

Prizma Digitech is one of the finest technology organizations, with expertise in HR & Operational Analytics. We have been successfully assisting leading organizations in Asia Pacific, Middle East and Africa to improve their performances via HR and Operational analytics and development.
Automation Anywhere is a leader in Robotic Process Automation (RPA), the preferred platform on which organizations build world-class Intelligent Digital Workforces. Automation Anywhere’s enterprise-grade platform uses software bots that work side by side with people to do much of the repetitive work in many industries. It combines sophisticated RPA, AI and embedded analytic technologies. Over 1,400 organizations use this AI-enabled solution to manage and scale business processes faster, with near-zero error rates, while dramatically reducing operational costs. Automation Anywhere provides automation technology to leading financial services, insurance, healthcare, technology, manufacturing, telecom and logistics companies globally.

About Automation Anywhere:
- 20 global locations
- 1,400+ employees
- 15 years of leading automation
- 1,000,000,000 + bots and counting

The RPA platform architected for business process automation is for present and future.

Acknowledgement

Faber Infinite had always believed in serving the industries for exponential growth and had always put efforts in making Indian industries world class industries. We at Faber Infinite will further continue to serve the Industries through our various initiatives. This report would not have been possible without the contribution and commitment of certain individuals within Faber Infinite.

The initiative for this report was led by Mr. Aakash Borse, Director at Faber Infinite and supported & compiled by Ms. Manasi Chandak, Management Executive at Faber Infinite. Special thanks to Ms. Mayuri Pandya & Ms. Priyal Shah from Faber Infinite for supporting the cause of the report.